p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.5Q8, C42.22D4, C4⋊C8⋊2C4, (C4×C8)⋊2C4, (C2×C4).8D8, (C2×C4).4Q16, C4.7(C4.Q8), C4.8(C2.D8), (C2×C4).30C42, (C2×C4).11SD16, C42⋊8C4.1C2, C42.304(C2×C4), (C22×C4).176D4, C4.28(D4⋊C4), C2.5(C4.9C42), C4.20(Q8⋊C4), C4⋊M4(2).4C2, C2.C42.1C4, C42.12C4.7C2, C2.3(C22.4Q16), (C2×C42).126C22, C22.10(D4⋊C4), C2.4(M4(2)⋊4C4), C23.138(C22⋊C4), C22.13(Q8⋊C4), C22.36(C2.C42), (C2×C4).95(C4⋊C4), (C22×C4).146(C2×C4), (C2×C4).336(C22⋊C4), SmallGroup(128,18)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.5Q8
G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, dad-1=a-1, cbc-1=a2b, dbd-1=a2b-1, dcd-1=a-1b2c3 >
Subgroups: 160 in 78 conjugacy classes, 40 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2.C42, C2.C42, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C2×M4(2), C42⋊8C4, C4⋊M4(2), C42.12C4, C42.5Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, C2.C42, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C4.9C42, C22.4Q16, M4(2)⋊4C4, C42.5Q8
(1 20 31 13)(2 21 32 14)(3 22 25 15)(4 23 26 16)(5 24 27 9)(6 17 28 10)(7 18 29 11)(8 19 30 12)
(1 3 5 7)(2 26 6 30)(4 28 8 32)(9 11 13 15)(10 19 14 23)(12 21 16 17)(18 20 22 24)(25 27 29 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 19 32 12)(3 29)(4 10 26 17)(6 23 28 16)(7 25)(8 14 30 21)(9 24)(11 15)(13 20)(18 22)
G:=sub<Sym(32)| (1,20,31,13)(2,21,32,14)(3,22,25,15)(4,23,26,16)(5,24,27,9)(6,17,28,10)(7,18,29,11)(8,19,30,12), (1,3,5,7)(2,26,6,30)(4,28,8,32)(9,11,13,15)(10,19,14,23)(12,21,16,17)(18,20,22,24)(25,27,29,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,19,32,12)(3,29)(4,10,26,17)(6,23,28,16)(7,25)(8,14,30,21)(9,24)(11,15)(13,20)(18,22)>;
G:=Group( (1,20,31,13)(2,21,32,14)(3,22,25,15)(4,23,26,16)(5,24,27,9)(6,17,28,10)(7,18,29,11)(8,19,30,12), (1,3,5,7)(2,26,6,30)(4,28,8,32)(9,11,13,15)(10,19,14,23)(12,21,16,17)(18,20,22,24)(25,27,29,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,19,32,12)(3,29)(4,10,26,17)(6,23,28,16)(7,25)(8,14,30,21)(9,24)(11,15)(13,20)(18,22) );
G=PermutationGroup([[(1,20,31,13),(2,21,32,14),(3,22,25,15),(4,23,26,16),(5,24,27,9),(6,17,28,10),(7,18,29,11),(8,19,30,12)], [(1,3,5,7),(2,26,6,30),(4,28,8,32),(9,11,13,15),(10,19,14,23),(12,21,16,17),(18,20,22,24),(25,27,29,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,19,32,12),(3,29),(4,10,26,17),(6,23,28,16),(7,25),(8,14,30,21),(9,24),(11,15),(13,20),(18,22)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | + | - | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | D4 | D8 | SD16 | Q16 | C4.9C42 | M4(2)⋊4C4 |
kernel | C42.5Q8 | C42⋊8C4 | C4⋊M4(2) | C42.12C4 | C2.C42 | C4×C8 | C4⋊C8 | C42 | C42 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 2 |
Matrix representation of C42.5Q8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 9 | 0 | 0 |
0 | 0 | 13 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 9 |
0 | 0 | 0 | 0 | 13 | 1 |
4 | 15 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 2 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 3 | 12 | 4 | 15 |
0 | 0 | 6 | 0 | 16 | 13 |
8 | 7 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 15 | 0 |
0 | 0 | 10 | 12 | 0 | 15 |
0 | 0 | 0 | 0 | 0 | 14 |
0 | 0 | 0 | 0 | 7 | 5 |
13 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 16 | 0 | 0 |
0 | 0 | 6 | 1 | 4 | 0 |
0 | 0 | 15 | 11 | 16 | 13 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,13,0,0,0,0,9,1,0,0,0,0,0,0,16,13,0,0,0,0,9,1],[4,0,0,0,0,0,15,13,0,0,0,0,0,0,13,1,3,6,0,0,2,4,12,0,0,0,0,0,4,16,0,0,0,0,15,13],[8,0,0,0,0,0,7,2,0,0,0,0,0,0,0,10,0,0,0,0,3,12,0,0,0,0,15,0,0,7,0,0,0,15,14,5],[13,1,0,0,0,0,0,4,0,0,0,0,0,0,1,4,6,15,0,0,0,16,1,11,0,0,0,0,4,16,0,0,0,0,0,13] >;
C42.5Q8 in GAP, Magma, Sage, TeX
C_4^2._5Q_8
% in TeX
G:=Group("C4^2.5Q8");
// GroupNames label
G:=SmallGroup(128,18);
// by ID
G=gap.SmallGroup(128,18);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,3924,102]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^-1*b^2*c^3>;
// generators/relations